

The UPSURGE Project Final Conference

Guiding Cities to Deliver Regenerative Urban Transformation

Upsurge Innovations to support Fit-for- Purpose NBS design

Thomas Martinez

LEITAT Technological center

10 February 2026
Katowice, Poland

This project has received funding from the European Union's Horizon 2020
research and innovation program under grant agreement No 101003818

Challenge & Objective

Contribute to NBS development:

- “Fit-for-purpose” consideration (functionality)
- “Fit-for-client” customization (practical - realistic considerations)

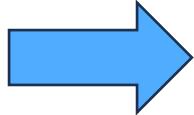
UPSURGE GOAL: provide a verified, challenge-led ecosystem of tools

Key focus: air quality and climate remediation

A Matchmaking matrix was developed

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101003818

The UPSURGE Project Final Conference: Guiding Cities to Deliver Regenerative Urban Transformation


10.02.2026, Katowice, Poland

UPSURGE TOOL: the matchmaking matrix

The Matchmaking Matrix: A holistic approach combining multiple tools

Inputs:

- Self-assessment
- NBS Registry
- KPIs list
- Plants catalogue

Solution:

Expert review
Matchmaking Matrix

Select specific NBS tailored to
the city's challenges, coupled
with KPIs and plant species

Input #1: NBS Registry

NBS Registry Overview

Synthesizes data on NBS potential to:

- Improve Air Quality
- Improve Climate neutrality
- Others benefits (e.g. water management, ...)

Compilation & Focus

- Comprehensive review of scientific literature
- Quantifies NBS performance

Key Performance Domains

AIR QUALITY

- Removal of particulate matter (PM10, PM2.5)
- Gaseous pollutants (NO₂, O₃)

CLIMATE NEUTRALITY

- Carbon sequestration
- Thermal regulation

NBS Registry Overview

Categorizes NBS, highlighting their primary functions

Input #2: KPIs

Keys Performance Indicators KPIs

Alignment of Urban Challenges with the evaluation framework

Measuring impact across 5 thematic areas:

Environmental quality

- Air quality
- Water pollution
- Soil contamination

Climate resilience

- Heat island effect
- Flood risk
- Water scarcity
- Drought risk

Social & Health

- Health and wellbeing
- Gender inequities
- Age-related vulnerabilities

Socio-economic

- Employment and jobs,
- Housing
- Property values
- gentrification

Planning & governance

- Mobility
- Crime
- Regenerative spatial planning
- Community involvement

Objective: show the benefits of using NBS in cities, using Key Performance Indicators: Hard data

Key focus areas: Specifically targeting air quality and climate neutrality

Input #2: KPIs Selection Methodology

KPIs selection

Step 1: Literature review: Analysis of existing EU projects

Step 2: Selection of KPIs by RACER (Relevant, Accepted, Credible, Easy, Robust) methodology

Relevant

Closely related to the objectives of pollution alleviation and climate neutrality

Accepted

By local authorities, stakeholders, scientific community and users

Credible

Accessible to non-experts, unambiguous and easy to interpret

Easy to monitor

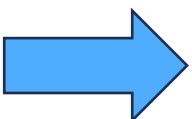
Data collected with reasonable effort and cost

Robust

Not easy to manipulate

Outputs:

- List of KPIs
- Standardized KPI Cards for assessment


Input #3: Plant Species

Optimization by plant selection

Multi-criteria Assessment for Plant Selection

Technical characterization (bibliographic review and lab experiments)

- Particle removal (PM10, PM2.5)
- NO₂ absorption
- Carbon sequestration
- Pollen
- BVOC emission

Database

140+ species characterized for their phytoremediation properties

Keys findings:

- Superior performers for particle removal
- Top performers for gaseous pollutants
- Strategic design tips
- Constraint management

Scientifically selecting the **right plant** for the **right pollutant**.

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101003818

The UPSURGE Project Final Conference: Guiding Cities to Deliver Regenerative Urban Transformation

10.02.2026, Katowice, Poland

Matchmaking Matrix

Self-assessment

Registry

Describes NBS benefits and functionalities

KPIs

How to assess, monitor NBS performances

Plant Catalogue

How to optimize NBS benefits by plant species selection

Matchmaking matrix

Propose appropriate NBS for specific city's challenges

Verified by assessments from demo cities like Belfast, Breda, Budapest, Katowice, Maribor, Patras and Prato

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101003818

The UPSURGE Project Final Conference: Guiding Cities to Deliver Regenerative Urban Transformation

10.02.2026, Katowice, Poland

Matchmaking Matrix

How it works

1

City Self-Assessment

Partners fill out a detailed questionnaire covering 40+ specific topics (Climate, Soil, Mobility, Social)

1) What is the area of your city? [km ²]	• Urban: 125.4 • Metropolitan: 2,928.717	36	164,6
2) What is the population of your city? [person]	Population (2011) • Municipality: 213,984 • Urban 167,446 • Urban density 1,300/km ² • Metro 314,567	101.893 (2018 data)	290.553
3) Elevation above sea level /// m ///	A: 80 H: 1.926 L: 0	A: 130 H: 145 L: 115	A: 300 H: 357 L: 245
4) Yearly average temperature /// °C ///	2010 : 15,3 2015 : 15,8 2020: 16,3	12.7 / 11.0 / 11.4 / 13.3 / 13.2	9,3 / 8,9 / 9,1 / 9,7 / 9,9
4.a) Winter average temperature /// °C ///	2010 : 10,3 2015 : 11,1 2020: 10,8	1.7 / 0.6 / 0.9 / 3.6 / 4.4	5,3 / 4,6 / 2,8 / 4,3 / 4,5
4.b) Summer average temperature /// °C ///	2010 : 23,5 2015 : 24,2 2020: 25,7	21.9 / 20.4 / 22.0 / 23.9 / 22.7	13,4 / 12,2 / 13,3 / 13,7 / 15,2
5) Average relative humidity /// % ///	72	72	77,2
6) Yearly average precipitation /// mm ///	2010 : 16,8 2015 : 16,4 2020: 17,2	389 / 696 / 815 / 599 / 523	686
7) Monthly average precipitation (from Jan to Dec) /// mm ///	5,0 / 28,5 / 19,7 / 11,0 / 1,4 / 0,0 / 0,0 / 0,0 / 3,0 / 13,5 / 36,7 / 45,2	10,5 / 23,5 / 37,5 / 2,7 / 10,6 / 91,9 / 62,7 / 113,2 / 26,4 / 90,2 / 22,3 / 31,0	51,6 / 38,9 / 49,1 / 41,8 / 70,9 / 73,4 / 106 / 77,4 / 67,1 / 43,5 / 40,6
8) Total private & public green area in your area? [m ²]	1.700.000	180,000	86.350.000
8.a) Total public green area in your area? [m ²]	Patras small forest : 411.371,65 Agia Park : 437.248,86 Platanus forest : 71.537,72 South Park : 69.378,08 Skagiopouleio : 35.019,81 Total : 1.024.556,12	23840000	36267000

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101003818

The UPSURGE Project Final Conference: Guiding Cities to Deliver Regenerative Urban Transformation

10.02.2026, Katowice, Poland

Matchmaking Matrix

How it works

1 City Self-Assessment

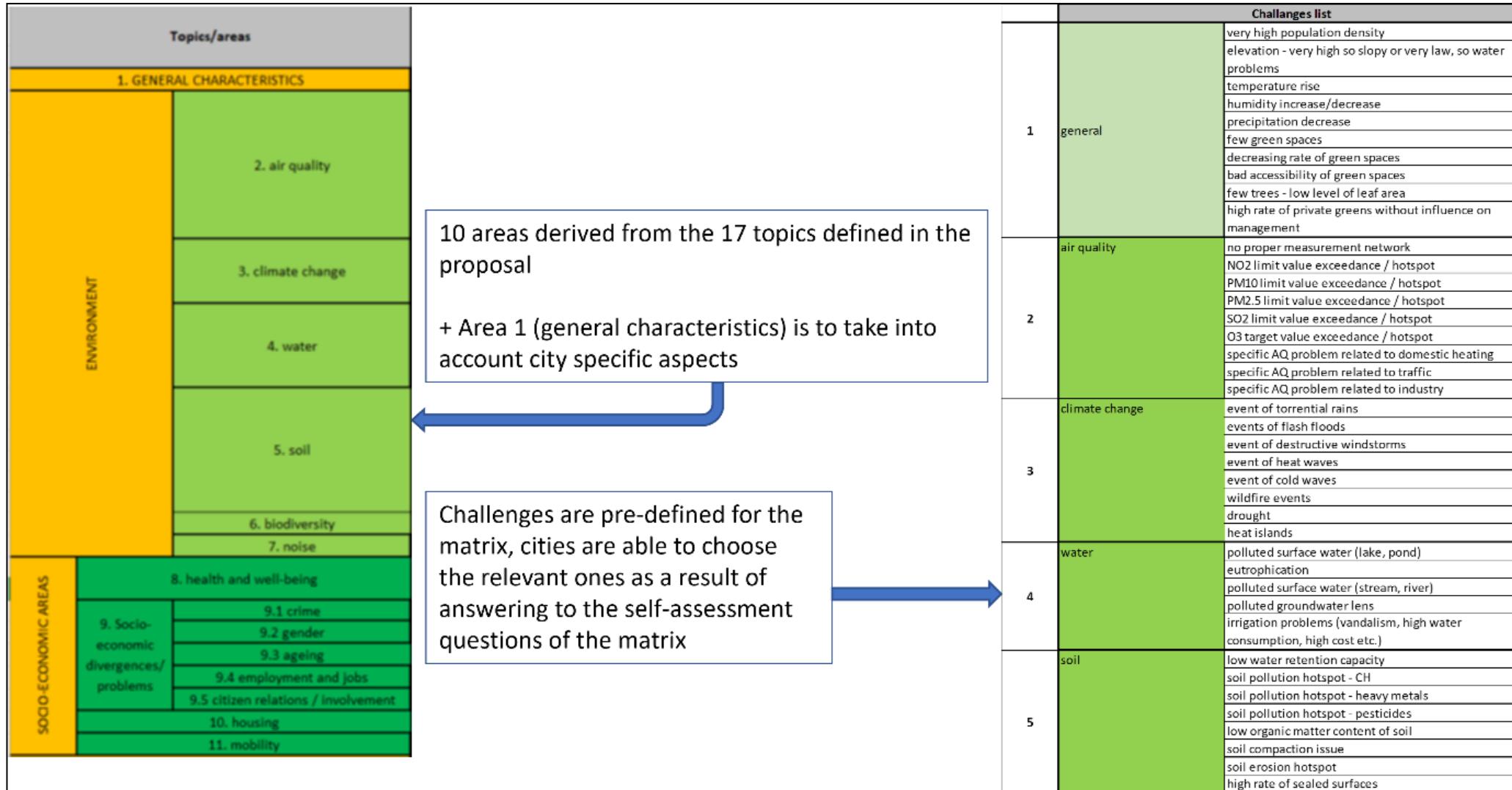
Partners fill out a detailed questionnaire covering 40+ specific topics (Climate, Soil, Mobility, Social)

2 Challenge identification

Analyzing responses to identify hotspots (e.g., "Soil Pollution Hotspot", "High car usage")

3 The Matrix Match

Mapping specific challenges to the NBS registry
Suggest potential green solutions



This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101003818

The UPSURGE Project Final Conference: Guiding Cities to Deliver Regenerative Urban Transformation

10.02.2026, Katowice, Poland

Matchmaking Matrix

Matchmaking Matrix

Topics/areas	Identified challenges	Explanation on the matching NBSs
air quality	no proper measurement network	If at a certain area no measurement points are established, complementary methods, such as bioindicators (e.g., moss) or alternative sensing (e.g., bee sensing) could be used to identify air quality problems
	NO ₂ limit value exceedance / hotspot	
	PM limit value exceedance / hotspot	
	SO ₂ limit value exceedance / hotspot	
	O ₃ target value exceedance / hotspot	
	specific AQ problem related to domestic heating	In general, all new green areas can contribute to decreasing air pollution levels; optimal solutions can be selected if the most relevant sources of <u>the pollution</u> can be identified. For example, hedges, fences, tree lines can be very useful in the case of traffic related <u>pollutions</u> and for certain industry <u>pollutions</u> ; green facades and living walls are suggested to be helpful in PM pollution cases etc.
	specific AQ problem related to traffic	
	specific AQ problem related to industry	

Matchmaking Matrix

How it works

1 City Self-Assessment

Partners fill out a detailed questionnaire covering 40+ specific topics (Climate, Soil, Mobility, Social)

2 Challenge identification

Analyzing responses to identify hotspots (e.g., "Soil Pollution Hotspot", "High car usage")

3

The Matrix Match

Mapping specific challenges to the NBS registry
Suggest potential green solutions

4

KPI Selection

Assigning monitoring indicators (e.g., NO₂ reduction, runoff coefficient) to ensure measurability

Plant Species Selection

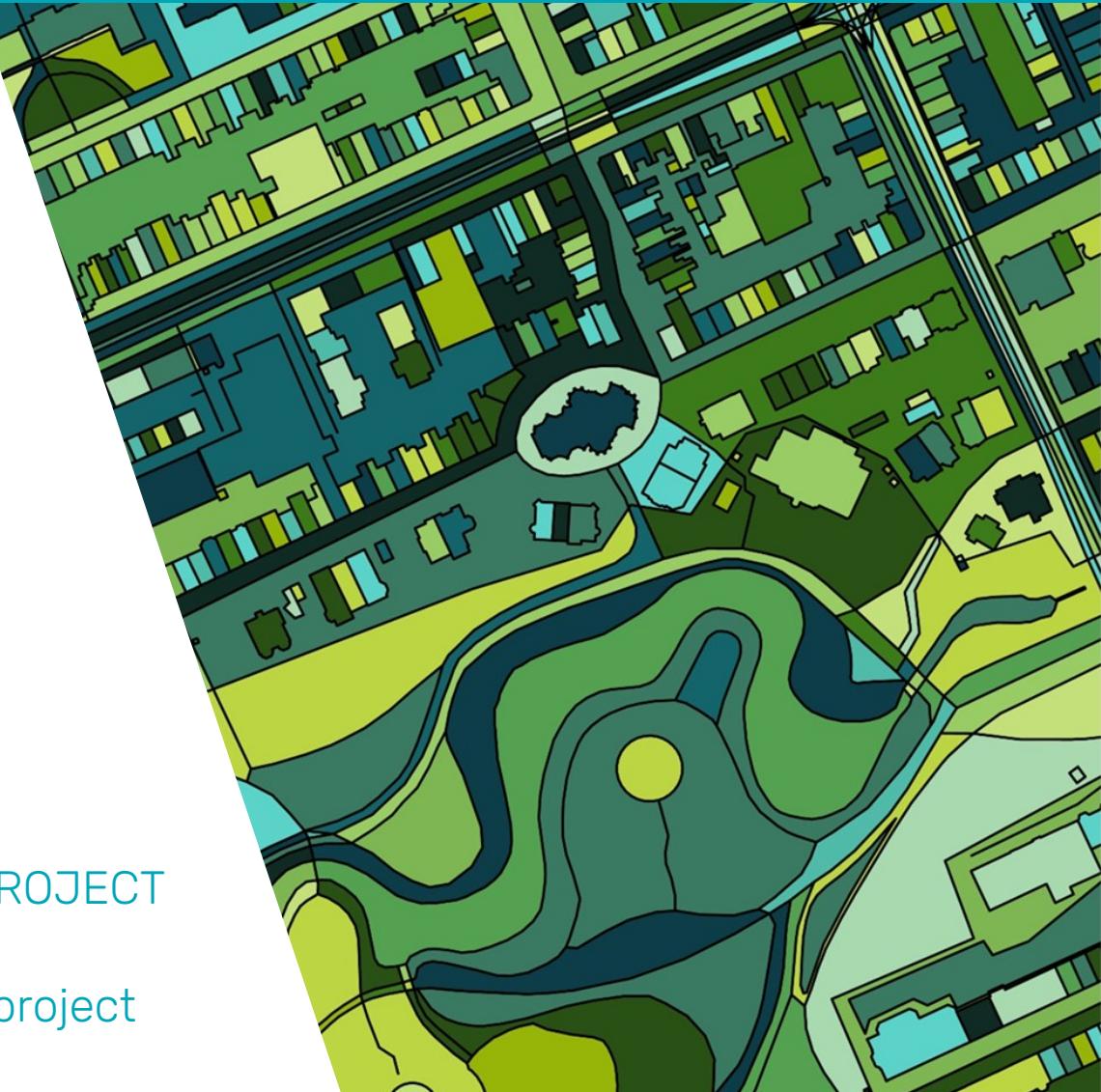
optimization of air quality and climate remediation

The UPSURGE Project Final Conference: Guiding Cities to Deliver Regenerative Urban Transformation

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101003818

Conclusion

Process


The matchmaking process consists of the following steps:

1. Questionnaire for self-assessment: basis of the evaluation
2. Expert assessment of the environmental and socio economic status of the cities
3. Identification of the main potential challenges
4. Match process with NBS registry, KPIs and plant species

Results

- Assistance to cities to define challenges
- Suggestion of NBS, plant species and KPIs

City-centered approach to catalyze nature-based solutions through
the EU Regenerative Urban Lighthouse for pollution alleviation and regenerative development

WWW.UPSURGE-PROJECT.EU

[@UPSURGE_H2020](https://twitter.com/UPSURGE_H2020)

[UPSURGE-PROJECT](https://www.linkedin.com/company/upsurge-project/)

[@UPSURGE.project](https://www.facebook.com/UPSURGE.project)

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101003818

The UPSURGE Project Final Conference: Guiding Cities to Deliver Regenerative Urban Transformation

10.02.2026, Katowice, Poland